Equipment Technical Specification

33 kV, 66 kV and 132 kV transmission cable joints and terminations

IMPORTANT DISCLAIMER

As the information contained in this publication is subject to change from time to time, Endeavour Energy gives no warranty that the information is correct or complete or is a definitive statement of procedures. Endeavour Energy reserves the right to vary the content of this publication as and when required. You should make independent inquiries to satisfy yourself as to correctness and currency of the content. Endeavour Energy expressly disclaims all and any liability to any persons whatsoever in respect of anything done or not done by any such person in reliance, whether in whole or in part, on this document.

Document no. ETS 0103
Amendment no. 0

51 Huntingwood Drive, Huntingwood NSW 2148
Postal address: PO Box 811 Seven Hills 1730
Phone: 131 318 Fax: (02) 9853 6000
ETS 0103 – 33 kV, 66 kV and 132 kV cable joints and terminations

Contents

1.0 PURPOSE ... 4
2.0 SCOPE .. 4
3.0 REFERENCES .. 4
4.0 DEFINITIONS AND ABBREVIATIONS ... 5
5.0 ACTIONS .. 6
5.1 Details of 33 kV, 66 kV and 132 kV cables in the HV transmission network 6
5.2 Joints and terminations .. 8
 5.2.1 General .. 8
 5.2.1.1 Technical information to be supplied with the offer 10
 5.2.1.2 Packaging ... 10
 5.2.1.3 Terminations .. 11
 5.2.1.4 Straight through Joints .. 11
5.3 Technical requirements ... 12
 5.3.1 Internal stress control .. 12
 5.3.2 Compatibility of materials ... 12
 5.3.3 Termination kit ... 12
 5.3.3.1 Outdoor terminations ... 12
 5.3.3.2 Plug-in terminations .. 13
 5.3.4 Joint kits ... 14
 5.3.4.1 Metallic screening .. 14
 5.3.4.2 Connectors for connecting cores .. 14
 5.3.4.3 Water blocking capability of joints .. 14
 5.3.4.4 Environmental conditions of installation ... 15
5.4 Typical construction drawings .. 15
5.5 Testing and supporting evidence ... 16
 5.5.1 Designation of voltages .. 17
 5.5.2 Accessory characteristics ... 17
 5.5.3 Type tests on accessories .. 17
5.5.3.1 General ... 17
5.5.3.2 Type tests on 33 kV accessories .. 18
5.5.3.3 Type tests on accessories for 66kV and 132kV cables 24
5.5.4 Routine tests on the main insulation of fabricated accessories 29
5.5.5 Sample tests on 66kV and 132kV accessories and their components 30

5.5.5.1 Sample test on components ... 30
5.5.5.2 Sample test on complete accessories .. 30
5.5.6 Type tests on connectors/links and lugs for all joints and terminations. 32

5.6 Range of approval ... 32

5.6.1 33 kV accessories .. 32

5.6.1.1 Range of approval for joints and terminations for cables with polymeric insulation .. 32
5.6.1.2 Range extension .. 33
5.6.1.3 Different insulation screen type extension 34

5.6.2 Range of approval for 66kV and 132kV accessories 37

5.6.2.1 Range of type approval on the cable used in type testing the accessory 37
5.6.2.2 Range of approvals on joints and terminations for cables with polymeric insulation .. 37

5.6.3 Range of approval for connectors/links and lugs for all joints and terminations .. 38

5.7 Specialised tooling .. 38

5.8 Product training and technical support ... 39

5.9 Occupational health and safety .. 39

5.10 Shelf life and requirement of special storage .. 39

5.11 Product samples ... 39

5.12 Disposal .. 39

6.0 AUTHORITIES AND RESPONSIBILITIES ... 40

7.0 DOCUMENT CONTROL .. 40

Annexure 1: List of joints and terminations required .. 41
1.0 PURPOSE
To specify the technical requirements for 33 kV, 66 kV and 132 kV cable joints and terminations used on the Endeavour Energy’s underground transmission network.

2.0 SCOPE
This specification covers the design, engineering, manufacture, testing, supply and delivery of 33 kV, 66 kV and 132 kV joints and terminations to be used in Endeavour Energy’s underground transmission cable network.

The joints and terminations offered in response to this Specification shall be manufactured and tested to the Standards with the year of publication listed below. Joints and terminations manufactured and tested to previous or later versions of the standards shall not be accepted.

Where this Specification conflicts with a standard, this Specification will prevail. However, significant inconsistencies should be referred to Network Mains Manager for resolution.

3.0 REFERENCES
• Company Policy 9.1.6 - Approved materials list
• Company Policy 9.2.5 - Network Asset Design
• Company Policy 9.2.10 - Network Asset Ratings
• Company Policy 9.7.1 - Network Asset Construction
• Network Management Plan December 2013 Review
• ENA National Electricity Network Safety Code (Doc 01-2008)
• AS/NZS 1429.1 – Electric cables – Polymeric insulated – For working voltages 1.9/3.3 (3.6) kV up to and including 19/33 (36) kV
• AS/NZS 1429.2 – Electric cables – Polymeric insulated – For working voltages above 19/33(36) kV up to and including 87/150 (170) kV.
• AS/NZS 4325.1:1995 – Compression and mechanical connectors for power cables with copper or aluminium conductors
• AS/NZS 4805.1:2007 – Accessories for electric cables – Test requirements Part 1: Power cables with extruded insulation for rated voltages from 1.9/3.3 (3.6) kV up to and including 19/33 (36) kV
• AS/NZS 60840:2006 – Power cables with extruded insulation and their accessories for rated voltages above 30 kV (36 kV) up to 150 kV (170 kV) – Test methods and requirements
• AS 62271.301:2005 - Dimensional standardization of terminals
• AS/NZS 4805.2:2007 - Accessories for electric cables – Test requirements Part 2: Impregnated paper insulated metal sheathed cables for rated voltages from 1.9/3.3 (3.6) kV up to and including 19/33(36) kV (excluding gas pressure and oil-filled cables)
• IEC 60502-2 – Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um =1.2 kV) up to 30 kV (Um = 36 kV) – Part 2: Cables for rated voltages from 6 kV (Um = 7.2 kV) up to 30 kV (Um = 36 kV)
• IEC 60840: 2012 – Power cables with extruded insulation and their accessories for rated voltages above 30 kV (Um = 36 kV) up to 150 kV (Um = 170 kV) – Test methods and requirements.
• IEC 61442:2005 – Test methods for accessories for power cables with rated voltages from 6 kV (Um = 7.2 kV) up to 30 kV (Um = 36 kV)
• IEC 62271-209: Cable connections for gas-insulated metal-enclosed switchgear for rated voltages above 52 kV – Fluid filled and extruded insulation cables – Fluid-filled and dry-type cable-terminations.
4.0 DEFINITIONS AND ABBREVIATIONS

3C
Three core

Accessory
Refers to joints, terminations and their components

AI
Aluminium

Consumable
Any material/component that has shelf life/expiry date

Cu
Copper

MAS&D
Manager Asset Standards & Design

GIS
Gas insulated switchgear

HDPE
High density polyethylene

HV
High voltage

MSDS
Material safety data sheet

NATA
National Association of Testing Authorities

PE
Polyethylene

PVC
Polyvinyl chloride

U
The r.m.s. power frequency voltage between phases

U_0
The rated r.m.s. power frequency voltage between each conductor and screen or sheath for which the accessories are designed.

U_m
The maximum r.m.s. power frequency voltage between any two phase conductors for which the accessories are designed.

UV
Ultra violet

XLPE
Cross linked polyethylene
5.0 ACTIONS

All 33 kV, 66 kV and 132 kV cable joints and terminations used on the Endeavour Energy transmission cable network shall comply with the requirements of this specification.

All items within the scope of this document shall be approved by Manager Asset Standards & Design prior to purchase.

5.1 Details of 33 kV, 66 kV and 132 kV cables in the HV transmission network

All new transmission cables installed on Endeavour’s network are polymeric insulated with a black HDPE over sheath and copper conductor. The 33 kV, 66 kV and 132 kV cables were manufactured and tested as set out in NNSW specifications 19/33 kV polymeric insulated underground cables (March 2014), 38/66 kV polymeric insulated underground cables (March 2014) and 76/132 kV polymeric insulated underground cables (March 2014) respectively.

The 33 kV, 66 kV and 132 kV cables are single core and longitudinally water blocked including the conductor. The cables are installed either direct buried, in PVC ducts/PE pipes or in a combination of these constructions within the franchise boundaries of Endeavour Energy. A summary of the technical details of the standard 33 kV, 66 kV and 132 kV cables installed in the transmission UG cable network are provided in Table 1 below.

Table 1- Summary of technical details of 33 kV, 66 kV and 132 kV transmission cables

<table>
<thead>
<tr>
<th>Item</th>
<th>132 kV cables</th>
<th>66 kV cables</th>
<th>33 kV cables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated operating voltages U<sub>m</sub></td>
<td>145 kV r.m.s. phase to phase</td>
<td>72.5 kV r.m.s. phase to phase</td>
<td>36 kV r.m.s. phase to phase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>132 kV r.m.s. phase to phase</td>
<td>66 kV r.m.s. phase to phase</td>
<td>33 kV r.m.s. phase to phase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U<sub>0</sub></td>
<td>76 kV r.m.s. phase to earth</td>
<td>38 kV r.m.s. phase to earth</td>
<td>19 kV r.m.s. phase to earth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulse withstand voltage, 1.2/50 µs</td>
<td>650 kV</td>
<td>325 kV</td>
<td>200 kV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum fault rating for duration of 1 s (single phase)</td>
<td>31.5 kA or 40 kA</td>
<td>31.5 kA</td>
<td>31.5 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductor size and configuration of single core cables</td>
<td>Stranded Compacted - 300 mm² - 400 mm² - 630 mm² - 800 mm²</td>
<td>Stranded Compacted - 630 mm²</td>
<td>Stranded Compacted - 300 mm² - 630 mm² - 800 mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Five Sector Milliken - 1200 mm² - 1600 mm² - 2000 mm²</td>
<td></td>
<td>Five Sector Milliken - 1200 mm²</td>
</tr>
</tbody>
</table>
Item

<table>
<thead>
<tr>
<th>Item</th>
<th>132 kV cables</th>
<th>66 kV cables</th>
<th>33 kV cables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor screen</td>
<td>Extruded cross-linked semi-conductive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>XLPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal insulation thickness</td>
<td>18.0 mm</td>
<td>11.0 mm</td>
<td>8.0 mm</td>
</tr>
<tr>
<td>Minimum insulation thickness</td>
<td>17.1 mm (exceeds the requirement of AS/NZS 1429.2)</td>
<td>10.45 mm (exceeds the requirement of AS/NZS 1429.2)</td>
<td>7.6 mm (exceeds the requirement of AS/NZS 1429.1)</td>
</tr>
<tr>
<td>Insulation screen</td>
<td>Extruded cross-linked semi-conductive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation screen stripability</td>
<td>Solidly Bonded</td>
<td>Hand Strippable</td>
<td></td>
</tr>
<tr>
<td>Metallic sheath</td>
<td>Cu wire screen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radial Water Blocking</td>
<td>Polyethylene / aluminium foil laminate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer sheath</td>
<td>Single layer HDPE with conductive graphite coating on outer surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over sheath colour</td>
<td>Black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum conductor / screen temperature under 1 s fault conditions</td>
<td>250 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductor</td>
<td>Copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum conductor temperature (cyclic loading - normal conditions)</td>
<td>90 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum conductor temperature (cyclic loading - emergency)</td>
<td>105 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50 Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.2 Joints and terminations

5.2.1 General

In general the cable joints and terminations kits shall be suitable to join and terminate cables in Endeavour Energy 33 kV, 66 kV and 132 kV transmission network which have an effectively earthed neutral. Each kit shall be supplied with sufficient components to join/terminate all three phases of the circuit.

The cables currently installed in Endeavour Energy’s transmission network have 95% concentricity. The suppliers shall cover the entire range of joints/terminations listed in Annexure 1, with the least number of joint/termination kits of each voltage category as far as possible. Preference shall be given to the suppliers who offer the minimum number of joint/termination kits in each designated operating voltage to cover the entire range.

Where joints and terminations contain consumables, these consumables shall be packed separately within the kit and also available for purchase as replacement parts if required.

The supplier shall provide a complete description (including part numbers) and price of all special tools and equipment that are recommended for the proper installation, operation and maintenance of the accessory.

Compression type or range taking shear bolt mechanical type connectors/lugs to suit copper conductors of the range of cable sizes may be used in kits for which each kit is designed and type tested.

Unless stated otherwise, the joint and terminations shall be manufactured and tested complying with the requirements stated in this specification and the following standards, as applicable to each voltage category and type of cable insulation:

a) 33 kV – AS/NZS 4805.1 and 4805.2 (test methods as stated in IEC 61442);
b) 66 kV and 132 kV – IEC 60840;
c) 33kV Plugin terminations - EN 50181:2011; and,

All joints and terminations shall be provided with adequate mechanical protection and protection against environmental conditions such as moisture ingress and UV radiation where exposed to direct sunlight.

Joints and Terminations shall be offered using the following technologies:

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Cold Applied*</th>
<th>Heat Applied</th>
<th>Taped</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 kV</td>
<td>Acceptable</td>
<td>Acceptable</td>
<td>X</td>
</tr>
<tr>
<td>66 kV</td>
<td>Acceptable</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>132 kV</td>
<td>Acceptable</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

*Cold applied joints and terminations with pre-expanded components having a shelf life less than 24 months, are not acceptable.

All joints shall be offered in both a cross bonded and non-cross bonded form. The joints offered for use in a cross-bonded system shall incorporate a method for sectionalisng the copper wire-screen and connecting the wire screen onto 240 mm² or 300 mm² stranded circular copper X-90 insulated PVC sheathed bonding cable that is brought out of the joint.

The method used for such connection shall not impair the electrical or mechanical performance of the hermetically sealed joint. Materials required to protect these connections and prevent moisture ingress to the joint shall be included in the joint kit.

The joints shall be encapsulated in a suitable enclosure to provide adequate mechanical protection and protection against environmental conditions. The enclosure of 66kV and
132kV joints shall be filled with a suitable quality insulating compound so that the joint is fully protected from ingress of moisture. The 33kV accessories may use other means to achieve protection against ingress of moisture.

Cables with wire screens have been protected against ingress of moisture by an aluminium/copper foil laminated with polyethylene outer quoting. The foil is separated from the copper wire screen by a water swellable, semi-conductive tape. The design of the joints and terminations shall preserve the purpose of the laminated foil which protects the cable (including the copper wire screen) against ingress of moisture.

It is preferred to have the same joint proposed for use in a cross bonded system or a non-cross bonded system with minor additional inclusions in the kit to allow both purposes (e.g. a suitable link to connect the screen wires and components to seal the openings provided for bonding leads).

A Bill of Materials (BOM) to complete the joint/termination shall be provided in each kit (separate from the installation instructions). The consumables such as resins, solvents, mastics, lubricants etc. that have an expiry date or shelf life shall be listed separately on the BOM. The expiry date of the each consumable item shall be provided on the item packaging.

The identity of each component or part number referred to in the BOM shall appear on the relevant component(s) or on the individual package of each component. The same identity of the components shall be used in the installation instructions. The minimum allowable settlement time applicable after completion of the joint shall be clearly specified in the installation instruction (refer to Clause 5.3.4.4).

Each joint and termination kit shall be accompanied with a set of installation instructions. The instructions shall be sequential and well detailed with dimensions and graphics, illustrating the assembling of each component of the kit onto the cable. The BOM with references to the identity of each component shall be included in the beginning of the installation instruction.

A copy of the installation instruction and BOM shall be included in the offer for each item.

The following information shall also be provided for each product:
- whether the item is a joint or a termination;
- the operating voltage;
- the applicable range of cable sizes (including conductor, insulation and overall cable diameters);
- the range and tolerance of each critical component; and,
- the accessory type, that is, heat applied or cold applied.

Endeavour Energy reserves the right to request the supplier to modify the installation instructions in any or all of the kits. Any such modifications shall be carried out in consultation with the manufacturer. After review and approval by the Network Mains Manager, no changes shall be made to any of components or installation instructions in the kit without prior approval from the Network Mains Manager.

It is desirable that the product(s) will withstand contamination by transformer oil. The performance of the product(s) when subjected to contamination of transformer oil shall be provided along with any submission.
5.2.1.1 Technical information to be supplied with the offer

A complete description of the items offered which shall include dimensional drawings, jointing instructions and special tooling requirements with reference but not limited to the following items shall be provided:

- proof of field performance of the product offered;
- detailed dimensional drawing of the longitudinal cross-section of the each joint/termination type offered. Clearly showing / identifying each component and the kits construction;
- the specification of the stress grading material/component in detail, the method of stress control and the quality control procedure employed in manufacturing of such material/component;
- copy of the original laboratory type test reports;
- installation instruction written in English for each type of accessory offered. The instruction shall be logical, sequential, clear and concise. Where practical, drawings or sketches shall be utilised to step through the installation process;
- an estimate of the time and number of persons that would be required to install each type of accessories offered;
- material safety datasheets for all components of each kit;
- details of shelf life and storage conditions (if any) of all component/materials offered; and,
- a comprehensive listing of all specialised tooling that is required to complete all offered accessory types.

5.2.1.2 Packaging

Each kit shall be packaged with the detailed installation instruction and correct components required to complete the installation of the joint or termination. Each component in each kit shall be suitably labelled for easy identification. Each kit shall include an itemised check list of components including consumables with reference to the identity and quantities of each component that are required to complete the installation of the joint or termination. A separate list of component for consumable items in the kit shall be also be provided. The lists shall also provide additional information including the name of the manufacturer, the part number and if applicable the expiry date. The terminology used for labelling shall be consistent with the identity used in the itemised list and the installation instructions relevant to the item. If there are items that have special storage requirements or expiry dates, such items shall be packed separately to the main kit.

The following information shall clearly be displayed on the box(s) of each kit:

- tender number including the year of award of the contract;
- supplier's name and logo;
- special care in handling of the box/components of the kit;
- manufacturer's name (if different from the supplier);
- manufacturer's part number;
- short description of the kit which specifies the purpose of the kit;
- date of manufacture;
- date of expiry of applicable items with their identity (if the product has a component that has a limited shelf life);
- special storage requirement (if applicable only); and,
- a short description of the product providing the range taking capability (that is range of conductor cross sections, insulation diameters and cable overall diameters, and the like)
The packaging shall protect the contents against dust and moisture, and shall be robust enough to protect the enclosed components against potential mechanical damages that could occur during delivery and handling.

5.2.1.3 Terminations

Indoor and outdoor type cable terminations are required to terminate all cable sizes listed in Table 1 as detailed in Annexure 1. Dry type plugin terminations are also required for indoor GIS switchgear connections.

All terminations shall facilitate cable sheath testing without disassembling or disconnecting any component of the termination other than the earth connection of the wire screen of the cable at the termination.

The normal service conditions of the terminations are as follows:

- the ambient air temperature does not exceed 45°C, and its average value measured over a period of 24 hours does not exceed 40°C;
- the ambient air temperature is not less than -10°C;
- the terminations installed in transformer cubicles, the maximum temperature due to sunlight/other heat sources such as transformers in the cubical does not exceed 80°C;
- maximum continuous cable temperature 90°C;
- maximum emergency rating of the cable 105°C; and,
- the altitude does not exceed 1000m.

Technical requirements for all terminations are detailed in Clause 0.

5.2.1.4 Straight through Joints

The joints shall be supplied to join any combination of two cables (detailed in Table 1) as requested in Annexure 1.

All joints shall be straight through joints (cross bonded and non-cross bonded). Stub and/or tee joints are not required.

All joints shall be suitable for being installed in an environment such as waterlogged outdoor cable trenches, partially covered pits or indoor cable basements.

Technical requirements for all straight through joints are detailed in Clause 0.
5.3 Technical requirements

Technical requirements for all cable joints and terminations are detailed below.

The joints / terminations shall not reduce the continuous current rating of the cable it is installed on. Endeavour Energy’s typical continuous current ratings for transmission cables are listed in clause 5.5 of MDI 0046.

The installation instructions shall provide details for installing the joint / termination on cables within and without a graphite conductive layer. Details shall be provided specifying the recommended method of removing the graphite coating from the cable sheath as well as the minimum distances.

5.3.1 Internal stress control

The internal stress control regime shall consist of a prefabricated unit(s) applying active pressure on the cable insulation to provide geometric stress control. The unit shall be pre-moulded and factory tested to IEC 60840. Alternative stress control regime may be proposed for 33 kV joints and terminations.

5.3.2 Compatibility of materials

The materials and installation techniques of the joints and terminations shall be physically, chemically, electrically and thermally compatible with the relevant cable material including materials used in the industry by other manufacturers. If the materials of the joints and terminations offered are not compatible with any other joint materials used in the industry, the supplier shall specifically identify such materials with the offer. Preference shall be given for the offers with unrestricted compatibility.

5.3.3 Termination kit

The termination lugs to suit the range of conductor size, maximum conductor current and relevant fault current shall be included in the kit. Compression type or range taking shear bolt mechanical lugs may be used.

Cable lugs for 33 kV indoor (except plugin's) and outdoor terminations are not required to be included in the kit.

Bolted or compression stalk lugs (cylindrical terminals) and suitable straight and right angle adaptor palm terminal connections shall be offered with all 66 kV and 132 kV outdoor terminations. Stalk lugs shall be as per Clause 7.3 Table 2 of AS 62271.301 and suitable for the rating of the cable. Adaptor terminal palms shall be tinned copper as per the dimensions / requirements of No.5 clause 7.3 AS 62271.301 with 4x14 mm diameter holes.

All terminations shall have the facility to carry out periodical 10 kV d.c. for one minute cable sheath testing without disassembling of the termination. Therefore, the termination shall be sufficiently insulated from the mounting structures and allow the disconnection of earthing connections. The rated insulation level of all materials used to insulate the wire screen from the grounded mounting structures shall withstand minimum of 15 kV d.c. for one minute in order to sustain the multiple periodical sheath testing for the life of the cable circuit.

5.3.3.1 Outdoor terminations

Outdoor terminations are required for both UGOH constructions and termination within substations. The outdoor terminations shall be self-supporting. The terminations used in substations will be on steel support structures and the UGOH terminations will be installed on steel brackets mounted on conductive and insulated poles. The outdoor termination shall consist of a weather proof housing which shall withstand exposure to the full solar UV radiation. The outer surface of the housing shall have high resistance to damage due to
flash overs and tracking that could occur due to lightning/switching surges. Light weight polymeric type housings with high level of anti-tracking properties are preferred.

Outdoor terminations shall be suitable insulation coordination with existing insulators and installation in areas with heavy industrial pollution or near coastal areas.

The minimum nominal creepage distance of the outdoor terminations shall be no less than 31 mm/kV.

This value is the ratio of the surface leakage distance measured between phase and earth over the r.m.s. phase to phase value of the system highest voltage for the termination which is based on the recommendation for very heavy pollution levels specified in Table 1 of AS 4436.

Therefore the minimum nominal specific creepage distances shall be:

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Minimum Creepage Distance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 kV</td>
<td>1116</td>
</tr>
<tr>
<td>66 kV</td>
<td>2248</td>
</tr>
<tr>
<td>132 kV</td>
<td>4495</td>
</tr>
</tbody>
</table>

Drawings of typical outdoor UGOH terminations are provided in Clause 5.4.

5.3.3.2 Plug-in terminations

The dry type plug-in cable terminations shall comprise of an elastomeric electrical stress control component in intimate contact with the separating insulating barrier (insulator of the connection enclosure) between the cable insulation and the gas insulation of the switchgear. The plug-in termination shall not require any insulating fluid and shall ensure electrical connection of the cable conductor with the other part of the network while maintaining the cable insulation up to the point of connection.

The dry type plug-in cable terminations suitable for the inside cones of GIS in Endeavour Energy transmission network are required for entire range of 33kV, 66kV and 132kV cable conductor sizes provided in the Table 1.

Endeavour Energy needs to carry out periodical tests on GIS components that require disconnecting the cables by withdrawing the plug-in terminations from the switchgear. Therefore, the supplier/manufacturer shall provide the following information for each type of plug-in terminations offered along with the submission for consideration during the evaluation of the offer:

- guaranteed number of in and out offload operations that can be carried out without impairing the electrical performance; and,
- recommended maintenance requirements such as replacements of parts (for example contact rings/fingers as applicable), after fault inspections, and the like, in order to maintain the electrical performance.
- Details of the suitability / compatibility of the plug-in terminations ability to be installed into other suppliers / manufacturers female terminal.

The 33kV plug-in terminations shall be dry type and shall be suitable for the 33kV gas insulated metal enclosed switchgear (GIS). The inside cones that house the cable terminations in the 33kV GIS shall comply to interface type 3 of EN 50181:2011.

Manufacturer/supplier may supply 72.5kV rated plug-in terminations that comply to IEC 62271-209:2007 (that is Type A of figure 4 and dimensions as given for rated voltage
72.5 kV to 100 kV in figure 5 of the IEC standard) for 33kV cable sizes in Table 1 only if the terminations suitable for those cable sizes cannot be manufactured to suit interface type 3 of EN 50181:2011.

The 66kV and 132kV plug-in terminations shall be dry type and shall be compatible with the cable connection enclosure provided at the switchgear / transformer. The cable connection enclosures are manufactured in complying with IEC 62271-209:2007. The typical arrangement of the cable connection assembly and the assembly dimensions are as described in Type A of Figure 4 and dimensions to suite the appropriate rated voltages given in Figure 5 of IEC 62271-209:2007 respectively.

Offers shall include the male and the female parts of the plugin terminations and shall be quoted separately. All dimensions of the male part and the female part of the plugin terminations shall be fully complied with the relevant dimensions specified in the international standards referred above (i.e. EN 50181: 2011 or IEC 6227-209:2007 as applicable).

5.3.4 Joint kits

Joints may be range taking with shear bolt mechanical connectors that are suitable to join more than one size of copper conductor. If the other components of the joint (such as pre moulded stress relief cone) permit, the joint kit can cover a range of cable sizes which minimises the total number of joints required in Annexure 1.

5.3.4.1 Metallic screening

All joints shall include full metallic screening for the entire length of the joint. The metallic screen of the joint shall solidly connect to the copper wire screen of the cable and shall be capable of carrying the designated full fault current of the cable as provided in Table 1.

The metallic screen shall be insulated from the external environment and shall be well protected against possible galvanic corrosion. The insulation of the metallic screen shall be capable of withstanding minimum of 15 kV d.c. applied between the metallic screen and the earth at least for one minute when the joint is buried. The test reports shall demonstrate the compliance to this requirement.

5.3.4.2 Connectors for connecting cores

Each joint kit shall be provided with connectors (links) that can be used to connect any two aluminium or copper cores of sizes in the designated range of the joint kit. The connectors shall be type tested to satisfy the Class A requirements specified in AS/NZS 4325.1 and the type test reports with the certificate shall be provided in accordance with Clause 0.

The connectors shall be centrally blocked preventing any form of liquid migrating through the connector under all conditions of operation. Unless the connectors are machined from a solid bar without through drilling, the connectors shall be type tested similar to method described in Appendix B of AS/NZS 4805.2 to prove that they are hydraulically blocked and the type test certificates shall be provided.

The connectors used within the accessories shall be correctly identified in the assembly instructions, where applicable, with respect of the following:

- size range of the connector;
- assembly technique;
- tooling and necessary setting;
- preparation of contact surfaces; and,
- type, reference number and any other identification of the connector.

5.3.4.3 Water blocking capability of joints

All cable joints shall be capable of blocking the water transmission through the joint as well as any migration of water from the environment into the joint. Where necessary, mastic
Tapes or alternative method shall be used to prevent water migration through as well as into the joint/termination.

All joints shall be subjected to heat cycle test under water, as a type test detailed in IEC 60840 Clause 15.4.2 test f).

5.3.4.4 Environmental conditions of installation

All joints shall be suitable for installation in outdoor pits or direct in stable but wet ground. The joint shall be able to be direct buried after being lowered to its final resting position within a reasonable settlement time. Preference will be given to kits that have a minimum settlement time, details shall be clearly stated in the installation instructions.

5.4 Typical construction drawings

The details of the typical construction of 33kV, 66kV and 132kV UGOH terminations in Endeavour Energy’s transmission network can be found in the drawings listed in Table 2:

<table>
<thead>
<tr>
<th>Drawing number</th>
<th>Amendment</th>
<th>Title</th>
<th>Line Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>398007</td>
<td>A</td>
<td>Overhead transmission 33 kV construction No.50C UG/OH Delta termination</td>
<td>Delta on concrete pole</td>
</tr>
<tr>
<td>398032</td>
<td>A</td>
<td>Overhead transmission 33 kV construction No.50VT UG/OH vertical termination</td>
<td>Vertical on timber pole</td>
</tr>
<tr>
<td>398022</td>
<td>A</td>
<td>Overhead transmission 66 kV construction No.60S UG/OH Delta termination</td>
<td>Delta on steel pole</td>
</tr>
<tr>
<td>397809</td>
<td>A</td>
<td>Overhead transmission 132 kV construction No.80S UG/OH Delta termination</td>
<td>Delta on steel pole</td>
</tr>
<tr>
<td>397820</td>
<td>A</td>
<td>Overhead transmission 132 kV construction No.80VT UG/OH Delta termination</td>
<td>Vertical on steel pole</td>
</tr>
</tbody>
</table>
5.5 Testing and supporting evidence

Several categories of products included in this specification require a series of tests in accordance with relevant standards specified. Where the product offered has been tested to different international/industry standards, the supplier shall detail the differences between the two standards and provide a copy of the relevant standard, in English, to which the product has been tested. Any test found to be inferior to the test specified in the relevant Australian standards, the test shall not be acceptable.

All costs associated with type, sample (batch) or routine tests shall be borne by the manufacture/supplier. Endeavour Energy shall not be held responsible for any costs associated with testing and Endeavour Energy will not be paying or reimbursing the manufacturer/supplier for the cost associated with testing or any other costs associated with the submission.

All technical information relevant to the product offered, not limiting to the information requested in this document, shall be provided.

All joints, terminations and their accessories shall be tested appropriately as specified in this clause, which is prepared in accordance with this standard and AS/NZS 4805.1, IEC 61442, AS/NZS 4325.1 for 33kV accessories and IEC 60840 for 66kV and 132kV accessories. For the purpose of carrying out the accessory tests as required by this standard and recording the results, the accessory and the cable used for testing accessories shall be correctly identified and recorded by the testing authority as required by the Appendix A of AS/NZS 4085.1:2007 for 33 kV cable accessories and Clause 7 of IEC60840:2011 for 66 kV and 132 kV accessories. This information shall be reflected in the test reports.

Acceptance of the test results is independent of conductor material. However, approval of range of conductor cross-sectional areas shall be as specified in Clause 0 of this document.

The assembly of accessories to be tested shall comply with the manufacturer’s relevant installation instruction included in the kit.

Tests performed on three core accessories shall be deemed to cover single core accessories of the same design. The converse shall not apply.

All type tests shall be performed according to the test sequence as listed in Table 4 and Table 5 for 33kV cable accessories and Table 6 for 66 and 132 kV cable accessories. All type tests shall be carried out by a testing authority holding accreditation:

- by NATA Australia; or,
- by an accreditation authority recognised by NATA Australia.

Tests from other testing authorities, such as KEMA, may be accepted at the discretion of Network Mains Manager.

All type test reports shall be accompanied by copies of the accreditation certificate(s) issued to the testing laboratory. The accreditation certificate(s) shall be valid for the relevant test(s) and for the duration of the test(s). A copy of the original laboratory type test report accompanying the signatures of the testing authorities shall be required. Reports compiled based on the laboratory test reports are not acceptable.

Type tests shall be less than five years old. Type tests beyond this limit may be acceptable at the discretion of the Network Mains Manager, if sufficient information can be provided to show that the manufacturing process, raw materials, design and quality control processes have not significantly changed since the original test date.

Reports/tests written in any language other than English shall not be accepted unless the reports are translated into English by a sworn translator.
5.5.1 **Designation of voltages**

The following values for U_m, U_0 and U corresponding to the given nominal system voltages shall be used for determining test voltages.

<table>
<thead>
<tr>
<th>Nominal system voltage (kV)</th>
<th>U_m (kV)</th>
<th>U_0 (kV)</th>
<th>U (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19/33</td>
<td>36</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>38/66</td>
<td>72.5</td>
<td>38</td>
<td>66</td>
</tr>
<tr>
<td>76/132</td>
<td>145</td>
<td>76</td>
<td>132</td>
</tr>
</tbody>
</table>

5.5.2 **Accessory characteristics**

For the purpose of carrying out the accessory tests described in this specification and recording the results, the accessory shall be correctly identified with respect to:

- a) cable/s used for testing accessories (as in Clause 6 of IEC 60840).
- b) conductor connections used within the accessories, where applicable, with respect to:
 - assembly technique;
 - tooling, dies and necessary setting;
 - preparation of contact surfaces;
 - type, reference number and any other identification of the connector;
 - details of the type test approval of the connector;
 - name of manufacturer;
 - type, designation and manufacturing date or date code;
 - rated voltage;
 - installation instruction (reference and date); and,
 - cable/s used for testing accessories (as in Clause 6 of IEC 60840).

5.5.3 **Type tests on accessories**

5.5.3.1 **General**

The tests specified in this clause are intended to demonstrate the satisfactory performance of accessories alone.

The maximum conductor temperature of the cable for normal operation and short circuit operation during tests shall be considered as 90°C and 250°C respectively for polymeric insulated cables.

Acceptance of the test results is independent of conductor material. However, approval of range of conductor cross-sectional areas shall be as specified in Clause 0 of this document.

All 33kV terminations, joints and their accessories shall be type tested appropriately as specified in Table 4 and Table 5, which are prepared in accordance with this standard, AS/NZS 4805.1, IEC 61442 and AS/NZS 4325.1. The cables used for testing shall comply with AS/NZS 1429.1 or IEC 60502-2 and shall be of the same voltage as the accessories to be tested. The cables shall be correctly identified as in Appendix A of AS/NZS 4805.1:2007.

All 66kV and 132kV joints and terminations shall be type tested appropriately as specified in Clause 0. The test procedures in
Table 6 shall be performed in accessories for 66kV and 132kV cables where the calculated nominal electrical stresses at the conductor screen not higher than 8.0 kV/mm and at the insulation screen not higher than 4.0 kV/mm. In other cases the type tests on the cable systems according to Clause 12 of IEC 60840 shall apply.

5.5.3.2 Type tests on 33 kV accessories

a) Type tests on 33 kV terminations

All tests specified for 33 kV terminations within this specification are type tests. The following type tests in Table 4, which is prepared based on the information provided in Table 4 of AS/NZS 4805.1:2007, shall be carried out on polymeric insulated cable terminations. Unless otherwise specified in the test description/criteria column of the table, all tests shall be carried out at ambient temperature. All tests shall be carried out to the relevant method described in IEC 61442.

Table 4: The sequence and requirements for type tests on terminations for 33kV polymeric insulated cables

<table>
<thead>
<tr>
<th>Test reference</th>
<th>Test name</th>
<th>Test description/criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/NZS 4805.1</td>
<td>Voltage withstand</td>
<td>Shall withstand 4.5U₀ a.c. for 5 min. or 4U₀ d.c. for 15 min. The test arrangement and sequence shall be as given in sequence 1.1,1.2 and 1.3 of Figure 1 of AS/NZS4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Voltage withstand wet</td>
<td>This test is for outdoor terminations only. Shall withstand 4.5U₀ a.c. for 1 min. The test arrangement and sequence shall be as given in sequence 1.1 of Figure 1 of AS/NZS4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Partial discharge</td>
<td>This test is not required for terminations installed on cables having unscreened insulation. 10pC maximum at 1.73U₀. The test arrangement and sequence shall be as given in sequence 1.1 of Figure 1 of AS/NZS4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Impulse test at maximum cable conductor temperature in normal operation +5K to +10K</td>
<td>Shall withstand 10 impulses of each polarity. The peak voltage of impulses shall be 170 kV and 200 kV for indoor and outdoor terminations respectively. The test arrangement and sequence shall be as given in sequence 1.1 of Figure 1 of AS/NZS4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Heating cycles in air.</td>
<td>Shall withstand when subjected to 60 heating cycles at 2.5U₀. The heating cycle in air shall be of at least eight hour duration with at least two hours at a steady state temperature of maximum cable conductor temperature in normal operation +5K to +10K followed by at least 3 hour of natural cooling to within 10 K of ambient temperature (refer to Clause 9 of IEC 61442). The test arrangement and sequence shall be as given in sequence 1.1 of Figure 1 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>Test reference</td>
<td>Test name</td>
<td>Test description/criteria</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Partial discharge at maximum cable conductor temperature in normal operation +5K to +10K and at ambient temperature.</td>
<td>This test is not required for terminations installed on cables having unscreened insulation. 10pC maximum at 1.73U₀. Partial discharge at elevated temperature is measured at the end of the heating period. The test arrangement and sequence shall be as given in sequence 1.1 of Figure 1 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Thermal short circuit (screen)</td>
<td>Two short circuits at least at 31.5 kA for 1 sec. Thermal short circuit may be combined with dynamic short circuit. No visible deterioration. The test arrangement and sequence shall be as given in sequence 1.2 and 1.3 of Figure 1 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Thermal short circuit (conductor)</td>
<td>Two (2) short circuits to raise the conductor to maximum permissible short circuit temperature of the conductor. Thermal short circuit may be combined with dynamic short circuit. No visible deterioration. The test arrangement and sequence shall be as given in sequence 1.2 and 1.3 of Figure 1 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Dynamic short circuit</td>
<td>This test is a three phase test and only required for single core cable terminations design for initial peak currents larger than 80 kA and for three core cable terminations design for initial peak currents of larger than 63 kA. One short circuit at short circuit current (initial peak value) in the conductor. The value shall be declared by the manufacturer. No visible deterioration. The test arrangement and sequence shall be as given in sequence 1.3 of Figure 1 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Impulse</td>
<td>Shall withstand 10 impulses of each polarity. The peak voltage of impulses shall be 170 kV and 200 kV for indoor and outdoor terminations respectively. The test arrangement and sequence shall be as given in sequence 1.1, 1.2 and 1.3 of Figure 1 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>a.c. voltage withstand</td>
<td>Shall withstand 2.5U₀ a.c. for 15 min. The test arrangement and sequence shall be as given in sequence 1.1,1.2 and 1.3 of Figure 1 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>Test reference</td>
<td>Test name</td>
<td>Test description/criteria</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Humidity</td>
<td>This test is for indoor terminations only. Shall be subjected to 1.25U₀ a.c. for 300 hours minimum. The test arrangement and sequence shall be as given in sequence 1.4 of Figure 1 of AS/NZS 4805.1. No breakdown or flashover. No more than three trippings. No substantial damage as per the details of assessment provided in Table 13 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Salt fog</td>
<td>This test is for outdoor terminations only. Shall be subjected to 1.25U₀ a.c. for 1000 hours minimum. The test arrangement and sequence shall be as given in sequence 1.5 of Figure 1 of AS/NZS 4805.1. No breakdown or flashover. No more than three trippings. No substantial damage as per the details of assessment provided in Table 13 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Examination</td>
<td>Accessory is examined for signs of: • cracking in the filling media and/or tape or tube component; and/or • a moisture path across a primary seal; and/or • corrosion and/or tracking and/or erosion which could, in time, lead to failure of the accessory; and/or • leakage of any insulating material. The test arrangement and sequence shall be as given in sequence 1.1,1.2, 1.3, 1.4 and 1.5 of Figure 1 of AS/NZS 4805.1.</td>
</tr>
</tbody>
</table>
b) Type tests on 33kV joints

The following type tests in Table 5, which is prepared based on the information provided in Table 5 of AS/NZS 4805.1, shall be carried out on polymeric insulated straight joints. Unless otherwise specified in the Test description/ criteria column of the table, all tests shall be carried out at ambient temperature. All tests shall be carried out to the relevant method described in IEC 61442:2005.

Table 5: The sequence and requirements for type tests on joints for 33kV polymeric insulated cables

<table>
<thead>
<tr>
<th>Test reference</th>
<th>Test name</th>
<th>Test description/criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/NZS 4805.1</td>
<td>Voltage withstand</td>
<td>Shall withstand 4.5U₀ a.c. for 5 min. or 4U₀ d.c. for 15 min. The test arrangement and sequence shall be as given in sequence 2.1, 2.2 and 2.3 of Figure 2 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Partial discharge</td>
<td>This test is not required for joints installed on cables having unscreened insulation. 10pC maximum at 1.73U₀. The test arrangement and sequence shall be as given in sequence 2.1 of Figure 2 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Impulse test at maximum cable conductor temperature in normal operation +5 K to +10 K</td>
<td>Shall withstand 10 impulses of each polarity. The peak voltage of impulses shall be 200 kV. The test arrangement and sequence shall be as given in sequence 2.1 of Figure 2 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Heating cycles in air.</td>
<td>Shall withstand when subjected to 30 heating cycles at 2.5U₀. The heating cycle in air shall be of at least eight hour duration with at least two hours at a steady state temperature of maximum cable conductor temperature in normal operation +5 K to +10 K followed by at least 3 hours of natural cooling to within 10 K of ambient temperature (refer to Clause 9 of IEC 61442). The test arrangement and sequence shall be as given in sequence 2.1 of Figure 2 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Heating cycles under water</td>
<td>Shall withstand when subjected to 30 heating cycles at 2.5U₀. The heating cycle under 1.0m of water shall be of at least eight hours duration with at least two hours at a steady state temperature of maximum cable conductor temperature in normal operation +5 K to +10 K followed by at least 3 hours of natural cooling to within 10 K of ambient temperature (refer to Clause 9 of IEC 61442). The test arrangement and sequence shall be as given in sequence 2.1 of Figure 2 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>Test reference</td>
<td>Test name</td>
<td>Test description/criteria</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>AS/NZS 4805.1 Table 5 Test 6</td>
<td>Partial discharge at maximum cable conductor temperature in normal operation +5 K to +10 K and at ambient</td>
<td>This test is not required for joints installed on cables having unscreened insulation. 10pC maximum at 1.73U₀. Partial discharge at elevated temperature is measured at the end of the heating period. The test arrangement and sequence shall be as given in sequence 2.1 of Figure 2 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1 Table 5 Test 7</td>
<td>Thermal short circuit (screen)</td>
<td>Two short circuits at least at 31.5 kA for 1 sec. Thermal short circuit may be combined with dynamic short circuit. No visible deterioration. The test arrangement and sequence shall be as given in sequence 2.2 and 2.3 of Figure 2 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1 Table 5 Test 8</td>
<td>Thermal short circuit (conductor)</td>
<td>Two short circuits to raise the conductor to maximum permissible short circuit temperature of the conductor. Thermal short circuit may be combined with dynamic short circuit. No visible deterioration. The test arrangement and sequence shall be as given in sequence 2.2 and 2.3 of Figure 2 of AS/NZS 4805.1.</td>
</tr>
</tbody>
</table>
| AS/NZS 4805.1 Table 5 Test 9 | Dynamic short circuit | One short circuit at short circuit current (initial peak value) in the conductor. The value shall be declared by the manufacturer. No visible deterioration. The test arrangement and sequence shall be as given in sequence 2.3 of Figure 2 of AS/NZS 4805.1.
Note: This test is a three phase test and only required for single core cable joints design for initial peak currents larger than 80kA and for three core cable terminations design for initial peak currents of larger than 63kA. The peak short circuit current of the cable where the joints are installed does not exceed these limits, the test is not required. |
<p>| AS/NZS 4805.1 Table 5 Test 10 | Impulse | Shall withstand 10 impulses of each polarity. The peak voltage of impulses shall be 200 kV. The test arrangement and sequence shall be as given in sequence 2.1, 2.2 and 2.3 of Figure 2 of AS/NZS 4805.1. |
| AS/NZS 4805.1 Table 5 Test 11 | a.c. Voltage withstand | Shall withstand 2.5U₀ a.c. for 15 min. The test arrangement and sequence shall be as given in sequence 2.1, 2.2 and 2.3 of Figure 2 of AS/NZS 4805.1. |</p>
<table>
<thead>
<tr>
<th>Test reference</th>
<th>Test name</th>
<th>Test description/criteria</th>
</tr>
</thead>
</table>
| AS/NZS 4805.1 | Examination | Accessory is examined for signs of:
• cracking in the filling media and/or tape or tube component; and/or
• a moisture path across a primary seal; and/or
• corrosion and/or tracking and/or erosion which could, in time, lead to failure of the accessory; and/or
• leakage of any insulating material.
The test arrangement and sequence shall be as given in sequence 2.1, 2.2, and 2.3 of Figure 2 of AS/NZS 4805.1. |
5.5.3.3 Type tests on accessories for 66kV and 132kV cables

The following type tests in Table 6, which is prepared based on the information provided in Table C.1 of IEC 60840, shall be carried out on polymeric insulated cable joints and terminations.

Unless otherwise specified in the test description/criteria column of the table, all tests shall be carried out at ambient temperature. All tests shall be carried out to the relevant method described in Clause 12 of IEC 60840.

The minimum length of free cable between accessories shall be five metres.

One sample of each accessory type shall be tested.

The accessories shall be assembled on the cable in the manner specified by the manufacturer’s instructions, with the grade and quantity of materials supplied, including lubricants, if any.

The external surface of accessories shall be dry and clean, but neither the cables nor the accessories shall be subjected to any form of conditioning not specified in the manufacturer’s instructions which might modify the electrical, thermal or mechanical performance.

During tests a) to e) of Table 6 it is necessary to test joints with their outer protection fitted. If it can be shown that the outer protection does not influence the performance of the joint insulation, for example there are no thermo-mechanical or compatibility effects, the protection need not be fitted.

Prior to the electrical type tests of the accessories, the insulation thickness of the cable used shall be measured and the test voltage values adjusted, if necessary, as stated below which is prepared as in Clause 12.4.1 of IEC 60840.

The insulation thickness of the cable shall be measured by the method specified in 8.1 of IEC 60811-1-1:1993 and Amendment 1:2001 on a representative piece of the length to be used for the tests, to check that the average thickness is not excessive compared with the nominal value.

If the average thickness of the insulation does not exceed the nominal value by more than 5%, the test voltages shall be the values specified in Table 3 for the rated voltage of the cable.

If the average thickness of the insulation exceeds the nominal value by more than 5% but nor more than 15%, the test voltage shall be adjusted to give an electrical stress at the conductor screen equal to that applying when the average thickness of the insulation is equal to the nominal value and the test voltages are the normal values specified for the rated voltage of the cable.

The cable length used for the electrical type tests shall not have an average insulation thickness exceeding the nominal value by more than 15%.
Table 6: The sequence and requirements for type tests on 66 kV and 132 kV joints and terminations

<table>
<thead>
<tr>
<th>Test reference</th>
<th>Test name</th>
<th>Test description/criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60840</td>
<td>Partial discharge</td>
<td>This test shall be performed in accordance with Clause 12.4.4 of IEC 60840:2011 using the test methods given in IEC 60885-3. The test voltage shall be raised gradually to $1.75U_0$ for 10 sec. and then slowly reduced to $1.5U_0$ (refer to Table 9, Column 5). The assembly shall be heated by conductor current only, until the cable reaches the required temperature. There shall be no detectable discharge exceeding the declared sensitivity from the test object at $1.5U_0$.</td>
</tr>
<tr>
<td>Clause 15.4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>test a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 60840</td>
<td>Heating cycle voltage test</td>
<td>This test shall be performed in accordance with Clause 12.4.6 of IEC 60840:2011. The cable shall have a U-bend with a diameter as specified in Clause 12.4.3 of IEC 60840:2011. The assembly shall be heated by conductor current only, until the conductor reaches a steady temperature 5K to 10K above the maximum conductor temperature in normal operation. The cycle of heating and cooling shall be carried out 20 times. During whole of the test period a voltage of $2U_0$ (refer to Table 9, Column 6) shall be applied to the assembly and interruption is not allowed until 20 heat cycles under the voltage is completed. No break down shall occur.</td>
</tr>
<tr>
<td>Clause 15.4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>test b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 60840</td>
<td>Partial discharge at:</td>
<td>This test shall be performed in accordance with Clause 12.4.4 of IEC 60840:2011. The test shall be carried out after the final cycle of Test b) or alternatively after the lightning impulse voltage test in Test d). The conductor temperature shall be maintained within the stated temperature limits for at least two (2) hours prior to commencing the test. The test voltage shall be raised gradually to $1.75U_0$ for 10 sec. and then slowly reduced to $1.5U_0$. (refer to Table 9, Column 5). The assembly shall be heated by conductor current only, until the cable reaches the required temperature. There shall be no detectable discharge exceeding the declared sensitivity from the test object at $1.5U_0$</td>
</tr>
<tr>
<td>Clause 15.4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>test c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test reference</td>
<td>Test name</td>
<td>Test description/criteria</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>IEC 60840 Clause 15.4.2 test d)</td>
<td>Lightning impulse voltage test followed by a power frequency voltage test</td>
<td>The assembly shall be heated by conductor current only, until the conductor reaches a steady temperature 5K to 10K above the maximum conductor temperature in normal operation. The conductor temperature shall be maintained within the above stated temperature limits for at least two hours. The lightning impulse voltage shall be applied according to the procedure given in IEC 60230. The assembly shall withstand 10 impulses of each polarity of the appropriate voltage given in Table 9, Column 7, without failure.</td>
</tr>
<tr>
<td>IEC 60840 Clause 15.4.2 test e)</td>
<td>Partial discharge test, if not carried out in Test c) above, at: • maximum cable conductor temperature in normal operation plus 5 K to 10 K; and, • ambient temperature.</td>
<td>This test shall be performed in accordance with Clause 12.4.4 of IEC 60840:2011 The test shall be carried out after the final cycle of Test b) or alternatively after the lightning impulse voltage test in Test d). The conductor temperature shall be maintained within the stated temperature limits for at least two (2) hours prior to commencing the test. The test voltage shall be raised gradually to 1.75\textit{U}_0 for 10 sec. and then slowly reduced to 1.5\textit{U}_0. (refer to Table 9, Column 5.) The assembly shall be heated by conductor current only, until the cable reaches the required temperature. There shall be no detectable discharge exceeding the declared sensitivity from the test object at 1.5\textit{U}_0.</td>
</tr>
<tr>
<td>Test reference</td>
<td>Test name</td>
<td>Test description/criteria</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>IEC 60840 Clause 15.4.2 test f) for outer protection of joints only.</td>
<td>Water immersion and heat cycling</td>
<td>The test shall be carried out as detailed in G.3 of Annexure G of IEC 60840:2011. The test assembly shall be immersed in water to a depth of not less than 1 m at the highest point of the outer protection. A total of 20 heating/cooling cycles shall be applied by raising the water temperature to within 15K to 20K below the maximum temperature of the cable conductor in normal operation. In each cycle the water shall be raised to the specified temperature, maintained at that level for at least 5 hours and then be permitted to cool to within 10K above ambient temperature. The minimum duration of each cycle of heating and cooling shall be 12 hours and the duration for raising the water temperature to the specified temperature shall be as much as possible the same as the duration for cooling the water to within 30 °C or 10K above ambient temperature, whichever is the higher. On completion of the heat cycles and the test assembly still immersed, the voltage tests below shall be carried out as stated in G.4.2 or G.4.3 as applicable to the accessory.</td>
</tr>
</tbody>
</table>

* Voltage tests | For assemblies embodying accessories without sheath sectionalising insulation:
• A test voltage of 25 kV d.c. shall be applied for one min between the metal screen/sheath of the power cable and the earthed exterior of the joint outer protection.
For Assemblies embodying sheath sectionalising insulation:
• a test voltage of 25 kV d.c. shall be applied for 1 min between the metal screens/sheaths of the power cable, at either end of the accessory, and also between the metal screens/sheaths and the earthed exterior of the joint outer protection; and,
• an impulse voltage test; to test each part to earth, a test voltage in accordance with
• Table 10 shall be applied between the metal screens/sheaths and the exterior of the assembly whilst immersed; and, to test between the metal screens/sheaths, the assembly shall be removed from the water before the impulse test.
The impulse testing procedure shall be performed in accordance with IEC 60230, the joint being at ambient temperature.
No breakdown shall occur during any of the above voltage tests. |
<table>
<thead>
<tr>
<th>Test reference</th>
<th>Test name</th>
<th>Test description/criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examination of the joint assembly</td>
<td>On completion of the voltage tests described above, the test assembly shall be examined. Joint outer protection boxes filled with removable compounds shall be regarded as satisfactory if there is no visible evidence of either internal voids or internal displacement of compound by water ingress, or of compound loss by way of the various seals or box walls. For joint outer protections employing alternative designs and materials, there shall be no evidence of water ingress or internal corrosion.</td>
</tr>
<tr>
<td>IEC 60840</td>
<td>Examination of the tested accessory</td>
<td>If possible the whole accessory shall be examined, after undergone tests a) to f), by dismantling of the accessory, with normal or corrected vision without magnification. The observations shall reveal no signs of deterioration for example electrical degradation, leakage, corrosion or harmful shrinkage which could affect the system in service operation. The examination shall be carried out as stated in Clause 12.4.8 of IEC 60840:2011.</td>
</tr>
<tr>
<td>Clause 15.4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>test g)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.5.4 **Routine tests on the main insulation of fabricated accessories**

The main insulation of each fabricated accessory shall undergo partial discharge test and voltage routine test as given in Table 7 (prepared based on Clause 9.2 and Clause 9.3 of IEC 60840:2011) according to either 1), 2) or 3) below:

1) on accessories installed on the cable;
2) by using a host accessory into which a component of an accessory is substituted for test; or,
3) by using a simulated accessory rig in which the electrical stress environment of a main insulation component is reproduced.

NOTE: The main insulation of prefabricated accessories consists of the components that come in direct contact with the cable insulation and are necessary to control electrical stress distribution in the accessory. Examples are pre moulded or precast elastomer or filled epoxy resin insulating components that may be used singly or jointly to provide the necessary insulation or screening of accessories.

Table 7: Routine test on the main insulation of fabricated accessories

<table>
<thead>
<tr>
<th>Test reference</th>
<th>Test name</th>
<th>Test description/criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60840</td>
<td>Partial discharge</td>
<td>The partial discharge test shall be carried out in accordance with IEC 60885-3 for accessory installed on cables, the sensitivity shall be 5 pC or better.</td>
</tr>
<tr>
<td>Clause 9.2</td>
<td>test</td>
<td>The test voltage shall be raised gradually to and held at 1.75 U_0 for 10 s and then slowly reduced to 1.5 U_0 (see Table 9, column 5).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>There shall be no detectable discharge exceeding the declared sensitivity from the test object at 1.5 U_0.</td>
</tr>
<tr>
<td>IEC 60840</td>
<td>Voltage test</td>
<td>The voltage test shall be made at ambient temperature using an alternating test voltage at power frequency.</td>
</tr>
<tr>
<td>Clause 9.3</td>
<td></td>
<td>The test voltage shall be raised gradually to 2.5 U_0 (see Table 9, column 4) and then be held for 30 min between the conductor and metal screen/sheath.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No breakdown of the insulation shall occur.</td>
</tr>
</tbody>
</table>
5.5.5 Sample tests on 66kV and 132kV accessories and their components

For accessories where the main insulation cannot be routine tested the supplier / manufacturer shall provide details of a proposed Sample Testing program (acceptable to Endeavour Energy’s Network Mains Manager) that illustrates compliance with the intent of clause 11.2 of IEC 60840.

If the sample fails either of the two tests specified in Clause 5.5.5.2, two further samples of the same accessory type shall be taken from the batch and subjected to the same tests. If both additional samples pass the tests, the other accessories of the same type from the batch shall be regarded as having complied with the requirements of this standard.

If either fails, this type of accessory of the contract shall be regarded as having failed to comply.

5.5.5.1 Sample test on components

As components differ from one supplier to another, it is not possible to define common sample tests on components in this specification. Therefore, the characteristics of each component shall be verified in accordance with the specifications of the accessories manufacturer, either through test reports from the supplier of a given component or through internal tests.

The manufacturer of a given accessory shall provide a list of the tests to be performed on each component, indicating the frequency of each test.

The components shall be inspected against their drawings. There shall be no deviation outside the declared tolerances.

5.5.5.2 Sample test on complete accessories

The following electrical tests shall be carried out by the manufacturer on a fully assembled accessory where the main insulation cannot be routine tested.

The main insulation of each prefabricated accessory shall undergo partial discharge and voltage test as stated in Table 8 below which is prepared based on Clause 9.2 and Clause 9.3 in IEC 60840:2011 respectively.

<table>
<thead>
<tr>
<th>Test reference</th>
<th>Test name</th>
<th>Test description/criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60840 Clause 11.2 test a)</td>
<td>Partial discharge test</td>
<td>The partial discharge test shall be carried out in accordance with IEC 60885-3 for accessory installed on cables, the sensitivity shall be 5 pC or better. The test voltage shall be raised gradually to and held at 1.75 (U_0) for 10 s and then slowly reduced to 1.5 (U_0) (see Table 9, column 5). There shall be no detectable discharge exceeding the declared sensitivity from the test object at 1,5 (U_0).</td>
</tr>
</tbody>
</table>
IEC 60840 Clause 11.2 test b) Voltage test

The voltage test shall be made at ambient temperature using an alternating test voltage at power frequency.

The test voltage shall be raised gradually to 2.5 U_0 (see Table 9, column 4) and then be held for 30 mins between the conductor and metal screen/sheath. No breakdown of the insulation shall occur.

Table 9: Test voltages

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rated voltage</td>
<td>Highest voltage for equipment</td>
<td>Value of U_0 For determination of test voltages</td>
<td>Voltage test of Cl. 5.4.3 Cl. 5.4.4.2</td>
<td>Partial discharge test of Cl. 5.4.3 Cl. 5.4.4.2</td>
<td>Heating cycle voltage test of Cl. 5.4.3</td>
</tr>
<tr>
<td></td>
<td>U (kV)</td>
<td>U_m (kV)</td>
<td>U_0 (kV)</td>
<td>2.5 U_0 (kV)</td>
<td>1.5U_0 (kV)</td>
<td>2U_0 (kV)</td>
</tr>
<tr>
<td>66</td>
<td>72.5</td>
<td>36</td>
<td>90</td>
<td>54</td>
<td>72</td>
<td>325</td>
</tr>
<tr>
<td>132</td>
<td>145</td>
<td>76</td>
<td>190</td>
<td>114</td>
<td>152</td>
<td>650</td>
</tr>
</tbody>
</table>

Table 10: Impulse voltage test for outer protection of joints

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rated lightning impulse voltage for main insulation a</td>
<td>Impulse level</td>
<td>Between parts</td>
<td>Each part to earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kV</td>
<td>Bonding leads \leq 3 m</td>
<td>Bonding leads >3 m and \leq 10 m b kV</td>
<td>Bonding leads \leq 3 m</td>
<td>Bonding leads >3 m and \leq 10 m b kV</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>60</td>
<td>60</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>60</td>
<td>75</td>
<td>30</td>
<td>37.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a - See Table 9, Column 7.

b - If sheath voltage limiters are placed adjacent to the joint, the voltages for bonding leads \leq 3 m are used.
5.5.6 Type tests on connectors/links and lugs for all joints and terminations.

The connectors/links and lugs shall be type tested to satisfy the Class A requirements specified in AS/NZS 4325.1. The following type tests in Table 11, which is prepared based on the information provided in AS/NZS 4325.1, shall be carried out on connectors/links and lugs.

All tests shall be carried out to the relevant method described in AS/NZS 4325.1.

Table 11: Type tests on connectors/links and lugs

<table>
<thead>
<tr>
<th>Test reference</th>
<th>Test name</th>
<th>Test description/criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/NZS 4325.1</td>
<td>Electrical tests</td>
<td>Each parameter shall have maximum values given in Table 2 of AS/NZS 4325.1:1995 that relevant to mechanical connectors.</td>
</tr>
<tr>
<td>Clause 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS/NZS 4325.1</td>
<td>Mechanical tests</td>
<td>No slip shall occur during the one minute tensile test under the given condition and the force applied as in Table 3 of AS/NZS 4325.1:1995.</td>
</tr>
<tr>
<td>Clause 7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.6 Range of approval

5.6.1 33 kV accessories

5.6.1.1 Range of approval for joints and terminations for cables with polymeric insulation

The following conditions which have been prepared in accordance with the requirement specified in Clause 3 of AS/NZS 4805.1 shall apply:

a) Approval of a range of conductor cross sectional areas from 95 mm² to 300 mm² of one type of accessory shall be obtained by successfully completing the full range of type tests specified in this standard, by installing the accessory deemed to test on a cable having nominal conductor cross section area 120 mm², 150 mm² or 185 mm².

Extension of approval to a range wider than that given above shall be achieved by carrying out the additional tests listed in Clause 0 Table 12, which is prepared based on Table 10 in AS/NZS 4085.1, on the smallest and /or largest conductor cross-sectional area of the required range.

b) The additional tests as specified in Clause 5.6.1.3 Table 13, which is prepared based on Table 11 of AS/NZS 4805.1, shall be carried out to achieve extension of approval of the accessory for different types of cable insulation screen or different cable conductor shapes from the construction of the cable that used in testing of the accessory.

c) Approval of an accessory tested for a specified U₀ shall extend to operation of the joint or the termination at a lower U₀.

d) The dimensions of separators nominated for testing of the terminations qualify the minimum clearance for application of the termination within the terminal box or adjacent to earthed surfaces and structures (including components of switchgear or transformers).
5.6.1.2 Range extension

Extension of approval wider than the range that given in Item (a) of Clause 5.6.1.1 shall be achieved by carrying out the additional tests in the sequence, as indicated in Table 12 below which is prepared based on Table 10 in AS/NZS 4085.1, on the smallest and/or largest conductor cross-sectional area of the required range.

Table 12: Additional tests for smallest and largest conductor cross-sectional areas

<table>
<thead>
<tr>
<th>Test reference</th>
<th>Test name</th>
<th>Test description/criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/NZS 4805.1</td>
<td>Voltage withstand</td>
<td>Shall withstand 4.5U_0 a.c. for 5 min. or 4U_0 d.c. for 15 min. The test arrangement shall be:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- for terminations – as set out in sequence 1.1, but testing half the number of samples given in Figure 1 of AS/NZS 4805.1: 2007; and,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- for joints – as set out in sequence 2.1, but testing half the number of samples given in Figure 2 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Partial discharge</td>
<td>This test is not required for joints installed on cables having unscreened insulation. 10pC maximum at 1.73U_0. The test arrangement shall be:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- for terminations – as set out in sequence 1.1, but testing half the number of samples given in Figure 1 of AS/NZS 4805.1: 2007; and,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- for joints – as set out in sequence 2.1, but testing half the number of samples given in Figure 2 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Impulse test at maximum cable conductor</td>
<td>Shall withstand 10 impulses of each polarity. The peak voltage of impulses shall be 200 kV. The test arrangement shall be:</td>
</tr>
<tr>
<td></td>
<td>temperature in normal operation +5 K to +10 K</td>
<td>- for terminations – as set out in sequence 1.1, but testing half the number of samples given in Figure 1 of AS/NZS 4805.1: 2007; and,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- for joints – as set out in sequence 2.1, but testing half the number of samples given in Figure 2 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>Test reference</td>
<td>Test name</td>
<td>Test description/criteria</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
| AS/NZS 4805.1 | Examination| Accessory is examined for signs of:
• cracking in the filling media and/or tape or tube component; and/or
• a moisture path across a primary seal; and/or
• corrosion and/or tracking and/or erosion which could, in time, lead to failure of the accessory; and/or
• leakage of any insulating material.
The test arrangement shall be:
• for terminations – as set out in sequence 1.1, but testing half the number of samples given in Figure 1 of AS/NZS4805.1: 2007; and,
• for joints – as set out in sequence 2.1, but testing half the number of samples given in Figure 2 of AS/NZS 4805.1. |

5.6.1.3 Different insulation screen type extension

In order to achieve extension of approval for a cable having a type of screen different to that of the cable used in the tests, additional tests shall be performed according to using cable having the same construction of the conductor/screen. Table 13 is prepared based on Table 11 of AS/NZS 4805.1.

Unless otherwise specified in the Test description/criteria column of the table, all tests shall be carried out at ambient temperature. All tests shall be carried out to the relevant method described in IEC 61442.

Table 13: Additional tests for different types of cable insulation screen and approval from round to shaped conductors

<table>
<thead>
<tr>
<th>Test reference</th>
<th>Test name</th>
<th>Test description/criteria</th>
</tr>
</thead>
</table>
| AS/NZS 4805.1 | Voltage withstand| Shall withstand 4.5\(U_0\) a.c. for 5 min. or 4\(U_0\) d.c. for 15 min.
The test arrangement shall be:
• for terminations – as set out in sequence 1.1, but testing half the number of samples given in Figure 1 of AS/NZS4805.1: 2007; and,
• for joints – as set out in sequence 2.1, but testing half the number of samples given in Figure 2 of AS/NZS 4805.1. |
<table>
<thead>
<tr>
<th>Test reference</th>
<th>Test name</th>
<th>Test description/criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/NZS 4805.1</td>
<td>Partial discharge</td>
<td>This test is not required for joints installed on cables having unscreened insulation. 10pC maximum at 1.73U₀. The test arrangement shall be: - for terminations – as set out in sequence 1.1, but testing half the number of samples given in Figure 1 of AS/NZS4805.1: 2007; and, - for joints – as set out in sequence 2.1, but testing half the number of samples given in Figure 2 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Heating cycle in air</td>
<td>Shall withstand when subjected to sixty heating cycles at 2.5U₀. The heating cycle in air shall be of at least eight hours duration with at least two hours at a steady state temperature of maximum cable conductor temperature in normal operation +5 K to +10K followed by at least 3 hours of natural cooling to within 10 K of ambient temperature (refer to Clause 9 of IEC 61442:2005). The test arrangement shall be: - for terminations – as set out in sequence 1.1, but testing half the number of samples given in Figure 1 of AS/NZS4805.1: 2007; and, - for joints – as set out in sequence 2.1, but testing half the number of samples given in Figure 2 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>AS/NZS 4805.1</td>
<td>Partial discharge</td>
<td>This test is not required for joints installed on cables having unscreened insulation. 10pC maximum at 1.73U₀. The test arrangement shall be: - for terminations – as set out in sequence 1.1, but testing half the number of samples given in Figure 1 of AS/NZS4805.1: 2007; and, - for joints – as set out in sequence 2.1, but testing half the number of samples given in Figure 2 of AS/NZS 4805.1.</td>
</tr>
<tr>
<td>Test reference</td>
<td>Test name</td>
<td>Test description/criteria</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------</td>
</tr>
</tbody>
</table>
| AS/NZS 4805.1 | Impulse | Shall withstand 10 impulses of each polarity. The peak voltage of impulses shall be 200 kV. The test arrangement shall be:
 - for terminations – as set out in sequence 1.1, but testing half the number of samples given in Figure 1 of AS/NZS4805.1: 2007; and,
 - for joints – as set out in sequence 2.1, but testing half the number of samples given in Figure 2 of AS/NZS 4805.1. |
| AS/NZS 4805.1 | a.c. voltage withstand | Shall withstand 2.5U₀ a.c. for 15 min. The test arrangement shall be:
 - for terminations – as set out in sequence 1.1, but testing half the number of samples given in Figure 1 of AS/NZS4805.1: 2007; and,
 - for joints – as set out in sequence 2.1, but testing half the number of samples given in Figure 2 of AS/NZS 4805.1. |
| AS/NZS 4805.1 | Examination | Accessory is examined for signs of:
 - cracking in the filling media and/or tape or tube component; and/or
 - a moisture path across a primary seal; and/or
 - corrosion and/or tracking and/or erosion which could, in time, lead to failure of the accessory; and/or
 - leakage of any insulating material. The test arrangement shall be:
 - for terminations – as set out in sequence 1.1, but testing half the number of samples given in Figure 1 of AS/NZS4805.1: 2007:
 - for joints – as set out in sequence 2.1, but testing half the number of samples given in Figure 2 of AS/NZS 4805.1. |
5.6.2 Range of approval for 66kV and 132kV accessories

5.6.2.1 Range of type approval on the cable used in type testing the accessory

When type tests have been successfully performed on one or more cables of specific cross section(s), and of the same rated voltage and construction, the type approval shall be considered as valid for cables within the scope of IEC 60840 with other cross-sections, rated voltages and constructions provided that all the conditions of a) to e) below, which are prepared based on Clause 14.2 of IEC 60840:2011, are satisfied:

a) The voltage group is not higher than that of the tested cable(s) (See Note 1 below).
b) The conductor cross-section is not larger than that of the tested cable.
c) The cable has the same or similar construction to that of the tested cable(s) (See Note 2 below).
d) The calculated nominal electrical stress at the cable conductor screen does not exceed the nominal electrical stress at the conductor screen of the tested cable(s) by more than 10%.
e) The calculated nominal electrical stress at the cable insulation screen does not exceed the nominal electrical stress at the insulation screen of the tested cable(s).

NOTE 1: In this context, accessories of the same rated voltage group are those of rated voltages having a common value of Um, highest voltage for equipment, and the same test voltage levels (see Table 4, columns 1 and 2 of IEC 60840:2011).

NOTE 2: Cables of similar construction are those of the same type and manufacturing process of insulation and semi-conducting screens. Repetition of the electrical type tests is not necessary on account of the differences in the conductor type or material or of the protective layers applied over the screened cores, unless these are likely to have a significant effect on the results of the test. In some instances, it may be appropriate to repeat one or more of the type tests (for example, bending test, heating cycle test and/or compatibility test).

The non-electrical type tests on cable components (as stated in Clause 12.5 of IEC 60840:2011) only need to be carried out on samples from cables of different voltage ratings and/or conductor cross-sectional areas if different materials and/or different manufacturing processes have been used to produce them. However, repetition of the ageing tests on pieces of completed cable to check compatibility of materials may be required if the combination of materials applied over the screened core is different from that of the cable on which type tests have been carried out previously.

5.6.2.2 Range of approvals on joints and terminations for cables with polymeric insulation

When type tests have been successfully performed on one or more accessories with one or more cable(s) of specific cross-section(s), and of the same rated voltage and construction, the type approval shall be considered as valid for accessories within the scope of this standard with other rated voltages, constructions and with other cables, provided that all the conditions of a) to d) below, which are prepared based on Clause 15.2 of IEC 60840, are met.

a) The voltage group is not higher than that of the tested accessory/ies (See Note 1 below).
b) The cable with another conductor cross-section, rated voltage and construction is within the range of type approval as stated in Clause 5.6.2.1. When the calculated nominal electrical stress at the cable insulation screen does not exceed 2.5 kV/mm, the type approval shall be considered as valid for accessories on all cables in this range.
c) Accessories have the same or a similar construction as that of the tested accessory/ies (See Note 2 below).
d) The calculated nominal electrical stresses within the main insulation parts of the accessory and at the cable and accessory interfaces do not exceed those of the tested accessory/ies.

NOTE 1: In this context, accessories of the same rated voltage group are those of rated voltages having a common value of Um, highest voltage for equipment, and the same test voltage levels (see Table 4, columns 1 and 2 of IEC 60840:2011).

NOTE 2: Accessories of similar construction are those of the same type and manufacturing process of insulation and semi-conducting screens. Repetition of the electrical type tests is not necessary on account of the differences in the connector type or material or of the protective layers applied over the main insulation part of the accessory, unless these are likely to have a significant effect on the results of the test. In some instances, it may be appropriate to repeat one or more of the type tests (for example, partial discharge test).

5.6.3 Range of approval for connectors/links and lugs for all joints and terminations

The tests made on one type of connector (including a lug) / conductor combination applies to that arrangement only. However, as given in Clause 5.3 of AS/NZS 4325.1, to limit the number of tests the following shall apply:

a) A connector which covers a range of cross-sections shall be accepted, if satisfactory results are obtained on the smallest and largest sections (see Note below).

b) A connector which can be used on round conductors or sector shaped conductors that are to be rounded, is accepted for both types if satisfactory results are obtained on any one type of conductor.

c) If a connector is a through connector for two conductors of different sectional areas, shapes or materials and if the technique and the connector barrels used have already been tested separately for each cross-section, no additional test is necessary. If not then additional tests shall be made using the smaller of the two conductors for the control.

NOTE: In case of connectors of which one or both sides are designed for a range of cross-sections, and a common clamping arrangement serves for the connection of the different cross sections, then a mechanical test on all area combinations is carried out according to Clause 7 of AS/NZS 4325.1.

5.7 Specialised tooling

Information on product specific specialised tooling required for installation of each joint / termination offered shall be provided. This shall include but not limited to:

- description, drawing or picture;
- manufacturer / supplier and relevant part numbers;
- appropriate quantity required to assemble a product; and,
- life expectancy of the item.
5.8 Product training and technical support

The supplier / manufacturer shall detail the training requirements of each joints / termination offered.

Adequate training (including documentations) for installation of the products shall be offered as and when required by Endeavour Energy. The training will be carried out in Endeavour Energy training school at Hoxton Park, NSW.

The supplier shall also make training available to accredited service providers (ASPs) if the supplier chooses to supply the products to ASPs after obtaining a product approval from Endeavour Energy.

The supplier shall nominate a technical representative readily available for product failure investigations that are generally carried out at Endeavour Energy’s training centre located at Hoxton Park.

The supplier’s technical representative shall also assist Endeavour Energy employees in resolving any other product related issues that arise within the life span of the product.

5.9 Occupational health and safety

Material safety data sheet (MSDS), where applicable, shall be supplied for each of the components that make up each kit. MSDS shall also be supplied for associated chemicals proposed to use in the installation processes. Safety precautions such as use of personal protective clothing and equipment relevant to the end user of offered products shall also be included in the installation instruction prominently.

Preference shall be given to products that are less hazardous and require less personal protective equipment.

5.10 Shelf life and requirement of special storage

Accessories shall not contain any component having shelf life less than 12 months.

If the product or any of the integral components of the product has a limited shelf life, the expiry or the use-by date for the kit shall be specified. Such information shall be provided on the labelling outside of the package. Where special storage requirements such as temperature controlled environment are necessary, such information shall be clearly stated on outside of the packaging.

5.11 Product samples

The suppliers who have generally passed the technical assessment shall be prepared to submit at least one sample kit from each type of joint / termination offered, within reasonable time of notice with no cost to Endeavour Energy. The samples shall be used in the evaluation process and will not be returned.

5.12 Disposal

If not recyclable, all products offered shall be suitable for disposal in regular land fill. If special disposal requirements exist for any product offered, details of such requirements shall be provided with the submission by the supplier.
6.0 AUTHORITIES AND RESPONSIBILITIES

General Manager Asset Management has the authority and the responsibility for:

- approving technical specifications, including any variations;
- making all decisions concerning compliance with this Specification;
- delegating any of these authorities and responsibilities to the Manager Asset Standards & Design.

Manager Asset Standards & Design has the authority and responsibility for:

- reviewing technical specifications and making recommendations to the General Manager Asset Management;
- making recommendations concerning compliance with this Specification.

Network Mains Manager has the authority and responsibility for:

- assessing the manufacturing facilities and their capability to perform the specified tests;
- reviewing all test reports submitted and making recommendations to the Manager Asset Standards & Design; and,
- approving the product and allocating.

Manager Logistics and Regional Staff have the authority and responsibility for purchasing joints and terminations that comply with the requirements of this specification.

Contractor Operations Manager, Network Connections Branch has the authority and responsibility for verifying that all joints / terminations installed by Accredited Service Providers comply with the requirements of this instruction.

Manufacturers/suppliers have the authority and responsibility for:

- being aware of their responsibilities under this instruction;
- providing suitable training for contractor/s under their control;
- implementing an effective quality auditing system;
- implementing this instruction; and
- keeping Endeavour Energy or other responsible equivalent officers informed of any factors that may prevent them from accepting responsibility for its full implementation.

7.0 DOCUMENT CONTROL

Documentation content coordinator: Network Mains Manager

Documentation process coordinator: Standard & Process Administrator
Annexure 1: List of joints and terminations required

1. Straight Through Joints

(Each to be offered with a cross bonded and non-cross bonded option (where a single kit cannot to both))

<table>
<thead>
<tr>
<th>Cable Details (Voltage, CSA)</th>
<th>33 kV</th>
<th>66 kV</th>
<th>132 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heat or Cold Applied</td>
<td>Cold Applied Only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>630</td>
<td>800</td>
</tr>
<tr>
<td>33 kV</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>630</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>800</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>1200</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>66 kV</td>
<td>630</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>630</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>800</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1200</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1600</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
2. Outdoor, Indoor and Plugin Terminations

<table>
<thead>
<tr>
<th>Cable Details (Voltage, CSA)</th>
<th>Outdoor Terminations</th>
<th>Indoor Terminations</th>
<th>Plugin Terminations</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>630</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>800</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1200</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>66 kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>132 kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>630</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>800</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>1200</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>1600</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>2000</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
</tbody>
</table>